

Evaluación de Bachillerato para el Acceso a la Universidad

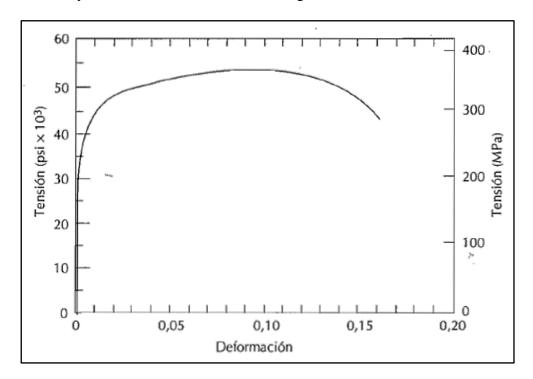
Castilla y León

TECNOLOGÍA E INGENIERIA II

EXAMEN N° páginas: 5

INDICACIONES:

- 1. **TIEMPO**: 90 minutos.
- 2. **OPTATIVIDAD**: El alumno deberá escoger libremente CUATRO preguntas de las OCHO propuestas. Se expresará claramente las elegidas.
- 3. **CALCULADORA**: Podrán usarse calculadoras no programables, que no admitan memoria para texto, ni para resolución de ecuaciones, ni para resolución de integrales, ni para representaciones gráficas.
- 4. **CRITERIOS GENERALES DE EVALUACIÓN**: Cada una de las preguntas se puntuará sobre un máximo de 2,5 puntos. Se valorarán positivamente las contestaciones ajustadas a las preguntas, la coherencia y la claridad de la respuesta, el rigor conceptual, la correcta utilización de las unidades, la incorporación, en su caso, de figuras explicativas, empleo de diagramas detallados, etc.


Pregunta 1. Materiales y fabricación: Propiedades y procedimientos de ensayo.

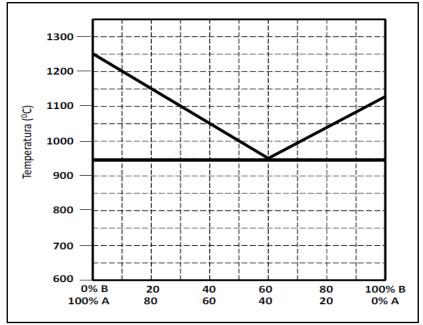
Cuestión

¿Qué parámetro del ensayo de tracción indica la ductilidad del material? (0,5 puntos.)

Problema

Una barra de aluminio de 127 mm de longitud con una sección cuadrada de 16,5 mm de lado es sometida a un ensayo de tracción cuyos resultados se muestran en la figura.

- a) Determinar el alargamiento máximo de la barra. (0,5 puntos.)
- b) Si se le somete a una carga de $6.67 \cdot 10^4$ N, determinar su alargamiento. (0.5 puntos.)
- c) El alargamiento que habrá cuando se alcance la tensión máxima. (0,5 puntos.)
- d) La tensión que es necesario aplicar para que el alargamiento sea de 1,27 mm. (0,5 puntos.)


Pregunta 2. Materiales y fabricación: Diagramas de equilibrio.

Cuestión

¿Qué tipos de líneas se pueden encontrar en los diferentes diagramas de equilibrio de fases? Explicarlas brevemente. (0,5 puntos)

Problema

Dos supuestos elementos metálicos son totalmente solubles en estado líquido y completamente insolubles en estado sólido. Forman eutéctico. Su equilibrio de fases se indica en el diagrama inferior. (Nota: dada la ausencia de papel milimetrado, se admitirán valores aproximados en la determinación numérica de los puntos del diagrama).

- a) Indica gráficamente las líneas, regiones y puntos significativos del diagrama. (0,5 puntos)
- b) ¿Cómo se llama la aleación de ambos metales en proporción [A:B] [40:60] y cuáles son sus características? (0,5 puntos)
- c) Una mezcla de ambos metales en proporción [A:B] [80:20] se calienta hasta fusión completa y posteriormente se enfría lentamente. Realizar un análisis de fases para esta aleación a las temperaturas de 1250 °C, 1100 °C y 800 °C. (1 punto)

Pregunta 3. Sistemas mecánicos: Estructuras.

Cuestión

Explica qué tiene que cumplir una estructura para que esté en equilibrio. (0,5 puntos.)

Problema

De la viga que se muestra en la figura:

- a) Calcula las reacciones en los apoyos. (0,5 puntos.)
- b) Calcula los esfuerzos cortantes y momentos flectores. (1 punto.)
- c) Representa los diagramas de los esfuerzos cortantes y momentos flectores. (0,5 puntos.)

Pregunta 4. Sistemas mecánicos: Máquinas térmicas.

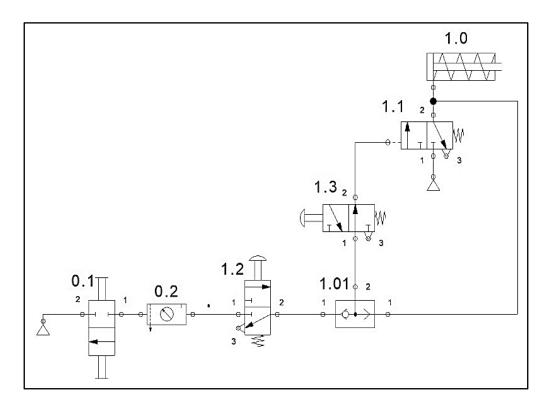
Cuestión

Explica los distintos tipos de transformaciones termodinámicas (isócora, isóbara) para un gas determinado. (0,5 puntos.)

Problema

Un motor monocilíndrico de dos tiempos, y encendido por chispa, tiene una cilindrada de 101,3 cm³ con un volumen de la cámara de combustión de 12,66 cm³. Proporciona una potencia máxima de 6 kW a 6.200 rpm, y un par máximo de 10 Nm a 4.580 rpm. Sabiendo que la carrera es de 4,96 cm, calcula:

- a) La relación de compresión. (0,5 puntos.)
- b) El diámetro del cilindro. (0,5 puntos.)
- c) El par a potencia máxima. (0,5 puntos.)
- d) La potencia a par máximo. (0,5 puntos.)


Pregunta 5. Sistemas mecánicos: Neumática e hidráulica.

Cuestión

Dibuja y explica cómo se comporta una válvula reguladora de caudal unidireccional. ¿Dónde debería colocarse para regular la velocidad de retroceso del vástago en un cilindro de doble efecto? (0,5 puntos)

Problema

En el circuito montado en el simulador Festo FluidSIM:

- a) Identifica todos los elementos numerados. (1 punto)
- b) Indica la misión de los pulsadores manuales. (0,5 puntos)
- c) ¿Qué logra la colocación de la válvula 1.01 en este circuito? (0,5 puntos)

Pregunta 6. Sistemas eléctricos y electrónicos: Circuitos de corriente alterna.

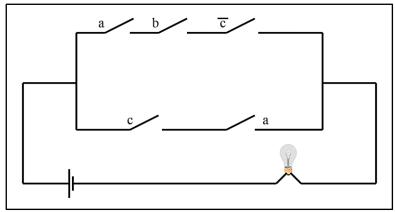
Cuestión

Explica, apoyándote en una gráfica, las características principales de la corriente alterna trifásica. (0,5 puntos)

Problema

En un circuito eléctrico, se conectan en paralelo una resistencia de 800Ω y una bobina de 0,2 H. Si aplicamos una tensión al circuito de 230 V eficaces, con una frecuencia de 50 Hz, calcula:

- a) Impedancia del circuito. (0,5 puntos)
- b) Intensidades en todas las ramas del circuito. (0,5 puntos)
- c) Factor de potencia. (0,5 puntos)
- d) Balance de potencias: activa, reactiva y aparente. (0,5 puntos)


Pregunta 7. Sistemas eléctricos y electrónicos: Electrónica digital.

Cuestión

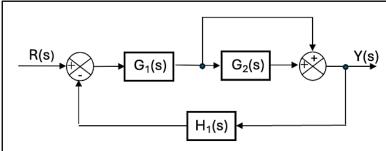
Un Algebra de Boole es la estructura algebraica que corresponde a un conjunto de elementos que pueden tomar los valores 0 y 1. Define la operación lógica producto a través de su tabla de verdad y su circuito eléctrico. (0,5 ptos.)

Problema

Dado el circuito de la figura 1, se pide dar la expresión de una función lógica que valga 1 cuando la bombilla se encienda.

Se debe contestar concretamente:

- a) Número de entradas empleadas. Número de funciones lógicas empleadas. (0,5 ptos.)
- b) Tabla de verdad empleada. (0,5 ptos.)
- c) Mapas de Karnaugh que se consideren necesarios. (0,5 ptos.)
- d) Simplificar la función lógica obtenida. (0,5 ptos.)


Pregunta 8. Sistemas informáticos emergentes y sistemas automáticos: Sistemas de control.

Cuestiones

- a) Explicar una aplicación de la inteligencia artificial en el ámbito de la seguridad pública. (0,5 ptos.)
- b) Explicar qué es la señal de referencia en un sistema de control de lazo cerrado. Poner un ejemplo. (0,5 ptos.)

Problema

Calcula la función de transferencia Y(s)/R(s) del sistema de control cuyo diagrama de bloques se muestra en la figura. (1,5 ptos.)

